Heuristic Search trial in Bayesian games
Supervised by Jilles 5. Dibangoye - CITI Lab

Conducted by Thomas DAMBRIN - INSA Lyon
December 2021

This document aims at providing a synthetic overview of the advances made
in the research project on game theory supervised by Jilles S. Dibangoye. This
research project is conducted as part of the Telecommunication Engineering
curriculum at INSA Lyon. The student, Thomas Dambrin, should first become
familiar with the game theory state-of-the-art on specific problem subclasses.
This involves studying theoretical concepts, establishing the corresponding lin-
ear programming problems for small examples and the adequate solving method
on SDM’S, the Plasma team C++ library providing solvers for sequential deci-
sion making problems. All these steps will be performed on the following classes

e Zero-sum Normal-form games
e Zero-sum Bayesian games [1]

Therefore, the first part of this document will be dedicated to solving approaches
for these well-known classes of game theory problems.

Then, we will investigate a new approach to solve Zero-Sum Bayesian games
and discuss its results obtained with the SDM’S implementation. We will study
different heuristic to fasten solution searches. Research on these classes have
shown interest towards finding approximated solutions through constrains that
take a cut on computational time [2].

Contents

1 Zero-Sum Normal-Form Games 3
1.1 Mathematical study & Linear Programming Problem 3
1.2 SDM’S Implementation 6

2 Zero-Sum Bayesian Games 6
2.1 Mathematical study and associated Linear programming 6
2.2 SDM’S Implementation 7

221 Model 7
2.2.2 Algorithm evaluation 8

2.3 Heuristic Search approach 12
2.3.1 Properties of the game tree 14
2.3.2 Heuristic search algorithm 15
2321 Naive 16

2.3.2.2 Medium 16

2323 Advanced 16

2.3.3 SDMS’s Implementation 16
2.3.4 Algorithm’s evaluation 17

2.4 Discussion e 22
3 Conclusion 22

1 Zero-Sum Normal-Form Games

1.1 Mathematical study & Linear Programming Problem

The purpose of this section is to illustrate how to solve zero-sum normal-form
games, both theoretically and with SDM’S experimentally, implementing the
solving algorithms in SDMS. Normal-form games are probably the simplest
games in game theory as they can be defined by just the following :

e a finite set of players 7
o {A;};cz finite sets of actions for each players

o {u; : X;erA;i — R} real-valued utility functions giving the utility for
player i depending on every player’s actions

Such a game can be represented by a matrix whose rows and columns corre-
spond to players’ actions and squares to the game payoffs for each player.

To make it clear, let’s say that two basketball players are facing each other,
one wants to score the ball and the other has to prevent this. Player 1, i.e. the
one who wants to score and has the ball, has two options : Shoot (S) or Feint
(F). Player 2, i.e. the defender, reacts to that instantaneously with either going
for the Counter (C) or Ignore (I) this threat. Figure 1 is this game’s payoff
matrix with each square featuring player 1 payoff, player 2 payoff.

C I
S 3,3 1,-1
F 3,3 1,1

Figure 1: Basketball 1vsl

To solve normal-form games, we need to find a Nash equilibrium i.e. a set
of unique strategies for each player where none of them would want to deviate
from his strategy if he knew the other players’ ones. In a normal-form game,
a player strategy can be either pure (the player always plays the same action)
or mixed (players plays according to a fixed distribution over its actions). Let’s
first search for pure strategies that form a Nash Equilibrium to the game. To do
that, we highlight the best responses of each player to the other player strategies.
Without going into more details, just know that to find best responses for a
player, we choose the player’s action that results into the highest utility when
fixing the other players’ actions. Indeed, if best responses match (i.e. always in
the same square), this would mean that players’ best strategies would constitute
an equilibrium. As Figure 2 shows us, there aren’t any matching best responses
so there is no pure strategy equilibrium in this game.

However, there must be a mixed strategy equilibrium ! so let’s dive into this.

INash Theorem, 1951 - Every game with a finite number of players and action profiles
has at least one Nash equilibrium.

I

C
3,

(1]

9

3] 3

1,

Figure 2: Basketball 1vsl best responses

Let’s assume that player 1 shoots the ball with a probability of p and so that he
feints with a probability of 1 - p. Then, in a mixed-strategy a Nash equilibrium,
player 2 has to be indifferent about its two pure strategies, each pure strategy
must yield into the same expected utility.

Hence, we can find the equilibrium by solving

U(C) = U(I)
<3p—3(1-p =01-p) —»p
S6p—-—3=1-2p
& 8p=4

Sp=1/2

A~ A~ A~/
w N
D D O —

5

We could do the same thing for player 1’s strategy but in this case, it is easy to
see that the result will be the same : perfect balance between both his actions.
When the game is symmetric, a strategy for player 1 which is part of a Nash
Equilibrium is also one for player 2. For this trivial game, there is one mixed
strategy Nash equilibrium consisting of the two players playing either one of
their pure strategy with probability 1/2.

This method works well for small examples but in a computer-driven method
for solving it is not optimal. Indeed, the resolution of such a system runs un
polynomial time complexity regarding the number of individual actions of the
players. In practice, it may be possible to reach a lower complexity resolution
method with solving a linear programming problem.

Let’s do so with another simple example : a modified Rock, Paper, Scissors
game. The matrix representation is given in Figure 3.

R2 P2 S2
R 0,0 2,2 1,1
P 2,2 0,0 4, 4
S 1,1 1, 4 0,0

Figure 3: Modified Rock, Paper, Scissors

In finite, two-players zero-sum games, i.e. pure competition game, the solution
for each player consists of finding a maxmin, or minmax, strategy. Indeed, such
a strategy is a Nash equilibrium in this context. Let’s write the problem for
player 1 (row player). A maxmin strategy 7} is a pure or mixed strategy which

fulfils the following condition :

7] = arg max min u; (71, mg) (6)
T 2

However, we don’t need to consider player 2’s mixed strategies. Pure strategies
can yield into lower payoff for player 2 at fixed m; given that the utility function
for player 2 is linear relatively to mixed strategies who are distributions over the
set of pure ones. Therefore, we must only focus on player 2’s pure strategies.
Let’s say that player 1 plays rock with probability p;, paper with probability
p2 and scissors with probability ps. Then, we can expect the following payoffs
(expected utilities for player 1 EU;) for each of player 2’s pure strategies :

R2: EU;, =2 -py — p3 (7)
P2:EUy = (—2)-p1 4+ 4-ps (8)
S2ZEU1:p1—4~p2 (9)

In general, the formula for EU; given player 2’s pure strategy identified by j, the
index of the corresponding column in the matrix, is EU; = Zi a;; - p; with i the
index of the raw identifying a pure strategy for player 1. The first part of the
minmax problem is to minimize this quantity so let’s write u = min; >, a;; - p;.
Note that each EU; defined by equations (7), (8) and (9) must be greater or
equal to u.

Thus, player 1 strategy fulfils 7 = argmax_ ,;min; > a;; - p;

which can be transformed to a linear problem with the objective :

* __
§] = argmaxu
T™1,U

and with the constraints :

2-py—p3 >
(=2)-p1+4-ps>u
pr—4-p2 >

Zpizl

With an online solver (e.g. http://www.phpsimplex.com/) using the simplex
method, we can now say that the optimal strategy for player 1 is to play with
probabilities distribution (p1=0.571429, p2=0.142857, p3=0.285714) regardless
of player 2 strategy. The same result would be obtained for player 2 as the game
is symmetric.

1.2 SDM'’S Implementation

Normal form games can be seen as a specific case of bayesian game (i.e. with
each player only having one type), therefore, the SDM’S implementation will be
discussed in the next section.

2 Zero-Sum Bayesian Games

This sections aims at aims at defining a zero-sum bayesian game, showing how to
solve it with a linear programming approach and exposing the SDM’s associated
implementation.

2.1 Mathematical study and associated Linear program-
ming

A Zero-sum bayesian game can be seen as a way to represent player’s uncertain-
ties about the very game being played [3]. To do so, we represent a bayesian
game as a collection of normal-form games with the same number of agents and
the same strategy space, i.e. the composing normal-form games only differ in
their payoffs. In order to be as clear as possible, we introduce the concept of
type for a given player. Intuitively, a type encapsulates all the information an
agent derived from its observations. If an agent knows which type it is in, the
space of possible games actually being played is reduced to games that corre-
spond to the agent’s type. We also add a probability distribution over the joint
types, i.e. common prior over games being played. A visual representation can
be the following :

02,1 02,2
1,-1] 0,0 -1,1] -2,2
01,1 -2,2 10,0 0,0 | 3,-3
p=0.1 p=04
0,0 | 1,-1 1-1 | -1,1
01,2 -1,1 | 0,0 -1,1 | 1,-1
p=203 p=20.2

Figure 4: Two players Zero-sum Bayesian Game

Player 1 has two types : 61, and 6;>. Player 2 also has two : 6, and
022. The goal when solving a two players zero-sum bayesian game for agent 7 is
to define, for each of its types, a strategy that constitutes a Nash-equilibrium.
Thus, we must define the linear programming problem for each of the agent’s

types.
Let’s first define some notations.

o Let m,(ax|0;,;) be the probability that agent x plays action ay when it is
in the type 0, ; and follows the strategy m,

o Let uy(ax, ar,0; ;) be the agent = payoff when it plays ay, when the agent
y plays a; and when the agent types are respectively 6 ; and 05 ;.

e Let P(6; ;) be the joint probability P(61,, 62,;).

The general form of this linear programming problem is a generalization of the
normal form one. It corresponds to the following :

Vj € |types of agent y|, 7 = arg maxZaj

and with the constraints :

with i € |types of agent x|,

with j € |types of agent y],

with k € |actions of agent x|,

with [€ |actions of agent y|,

Vi, Vi, ZP(GM) g (ag, ar,0;) - T (agl0z,:) > a;
ik

Vi, Z To(ak|0z,:) =1
k

Viv Vka Wr(akw:c,i) >0

2.2 SDM’S Implementation

In this section, we are going to discuss the SDM’s Implementation to solve
two-players zero-sum bayesian form games, and thus, indirectly, two-players
zero-sum normal form games.

2.2.1 Model

As discussed earlier, an N-players bayesian game is represented by several things:
- a set of N agents

- a set of types for each agents

- a probability distribution over the joint types

- a set of normal-form games with the same number of agents and strategy space

Thus, an interface called BayesianGamelnterface must be inherited when writ-
ing a class with specific choices for modelling the game information such as the

classes TwoPlayersBayesianGame and TwoPlayersNormalFormGame. This in-
terface enforce the definition of 4 main functions : getNumAgents(), getAction-
Space(), getTypeSpace(), getJointTypesProba(..) and getPayoff(..).

To actually model two-players bayesian games and two-players normal-form
games, two subclasses have been created. Note that the TwoPlayersNormal-
FormGame class is, more or less, the same class as TwoPlayersBayesianGame
with only one type per agent. Consequently, we will only dive in the TwoPlay-
ersBayesianGame class.

In both of this subclasses, several informations about the game are built and
stored :

- actions and types as std::shared_ptr<MultiDiscreteSpace>

- all the game’s payoffs as a RecursiveMap <std::shared_ptr<State>, std::shared_ptr<Action>,
int, float> where int is the agent id

- joint types probabilities as RecursiveMap<std::shared_ptr<State>, float>

A parser has been defined in the parser.cpp file that constructs such a game
with the following input format :

- number of types for each agent separated by spaces

- number of actions for each agent separated by spaces

- payoffs of each normal form games with values for each agent being put in
subsequent matrices

- joint types probabilities separated by spaces

Figure 5b is an example of a Bayesian game 2 and the corresponding input
file.

The instances built by this parser are then given to a solver : the BayesianGame-
Solver class which will write the Linear Programming problem when initialized
using CPLEX library to represent it. Using CPLEX solve method with auto-
matic selection of the best algorithm, it will then store the solution in a class
attribute as a StochasticDecisionRule.

An example of how to use the solver is given in the file ezamples/ex-bayesian.cpp.

2.2.2 Algorithm evaluation

In order to evaluate the performances of our implementation, we perform a
time-complexity analysis of it with a focus on the impact of types and actions
distributions for the same input size. From now on, the term ”input size” will
refer to the number of constraints required for the LP plus the number of (type,
action) possible pairs for the agent whose solution we seek. It is therefore com-
puted with [©%] - (1 + |AY|) + [©7%] - |[A7!|. LP building time and LP solving

2Note that the previous LP for this game is not a Nash-equilibrium as the game is not ZS.
The LP solution can be interpreted as the maximum security level reachable for an agent.

i MP i PD §
b [20fo2] i [22]03
o Toal2o] o [30]11] |
L p=03 p=0.1
Coord BoS ‘
Pl 22000 o121 00 §
el Too | i [oo[n2] |
L =02 p=04

(a) Bayesian game.

number of types for each agent
2 2
game dimensions i.e. #actions for each agent
2 2
#payoff values :
for joint_type = (0,0)
for agent 1

#

#

2 0

0 2

for agent 2

0 2

2 0

for joint_type = (0,1)
for agent 1

20

31

for agent 2

2 3

01

for joint_type = (1,0)
for agent 1

2 0

0 1

for agent 2

20

01

for joint_type = (1,1)
for agent 1

2 0

01

for agent 2

10

0 2

joint types probabilities
for joint_-type = (0,0) and (0,1)
0.3 0.1

for joint_type = (1,0) and (1,1)
0.2 0.4

(b) Input file.

Figure 5: Bayesian Game Input

time are evaluated independently for a better analysis of each of the algorithm’s
components. Note that, from a theoretical point of view, the number of con-
straints of the LP is [©7%| - |[A™| + |©?| when searching for i’s strategy. Tests
were performed over 50 instances of Bayesian games for each data point with
uniform-like joint type probability distributions. We detail below the results for
different input variations.

Let’s first dive in the algorithm’s behavior over changes in types and actions
distributions. Types (resp. actions) distributions refer to the number of types
(resp. actions) for each agent. Such distributions will be expressed in terms of
percentages i.e. a types distributions of 50/50 means that each agent has the
same number of types. Independent studies of types and actions distributions
resulted in graphics 6 and 7.

Solve Time = f(actions distribution) with types distribution = 50/50
W Agent1 W AgentJ2

200000
150000
T
2
£ 100000
2
[=]
w
50000

01666666667 0,3333333333

Agent1 actions percentage

Figure 6: Actions distribution influence

We observe that the more equally distributed the actions or types are the
faster the algorithm will perform. For the LP solving step, we can explain by
the duality between searching for 1’s strategy (primal) and 2’s strategy (dual)
[4] and CPLEX makes use of this duality to solve the LP. In our scenario, ei-
ther the primal or the dual becomes easy to solve when one agent has very low
number of actions/types which is why we observe better performances when
the distribution is not balanced. The difference between agents solving time
increasing with distribution imbalance may be due to the time CPLEX takes to
build the dual instance.

Now that we have established that distributions have a direct impact on the
algorithm’s performances, let’s look at its behavior regarding input size for

10

Solve Time = f(types distribution) with actions distribution = 50/50
W Agent1 W AgentJ2
200000

150000

100000

Solve time (us)

50000

01666666667 0,3333333333

Agent 1 actions percentage

Figure 7: Types distribution influence

which all test instances distributions are set to 50/50.

11

Algo Time = f(input_size) with log scale

== Build Al == Build A2 Solve A1 == Solve A2

5000000

< 1000000
=

@ 500000
E
z
5

= 100000
5

50000

250 500 750 1000 1250 1500
Input size

Figure 8: Input size influence

From what we see in Figure 8, we can conjecture two things. First, the
LP building step is below exponential complexity. More tests should show that
it runs in linear time regarding input size i.e. in polynomial time regarding
number of actions and types for each agent. This is expected since we said that
building time’s complexity is [6]-]0?| - |A'|-|.A%|. Then, the LP solving step is
shown to be below exponential complexity as well. It is an expected result as
LP solving is known for being a polynomial time problem and CPLEX should
manage to choose the best way to solve a LP thanks to its LP examination
step. We can also check that there is no significant running time difference
between each agent for the same reasons as exposed above (duality and 50/50
distributions).

2.3 Heuristic Search approach

The previous results i.e. polynomial time complexity suggests that this complete
LP approach would be intractable for complex Bayesian games (i.e. with a high
number of types and/or actions and/or with equally distribution actions/types
according to the previous observations). Thus, we wish to investigate a second
approach in which the solution could be e-optimal but with a significant time
reduction. Our strategy is not to build the entire LP at first but to do it
step by step until a quality criteria (e.g. convergence criteria) is reached. To
do so, we propose to model the Bayesian game as sequential game whose tree
representation has the semantic pictured in Figure 9.

b0 is the joint types distributions (common prior)

Agentimixed .*" . s — -
sirategies .° : - infinite branching factore
7 S D5 - 8

T, is @ mixed sirategy for agent 1 i.e. a decision rule which
associates an actions distribution with each of agent 1 types

82 branching factor is |©2]

Agent2types 82 8.

Agent 2 actions "

soE v 82 - branching factor is |A2]

nlbg, Ty azl62) is agent 1 payoff value for mixed
strategy T4, common prior by, type 87 and action a,

ribg, Ty, 82182 ribg, T, 82(83)

Figure 9: Bayesian game tree

As the first branching factor is infinite, we aim at exploring these nodes by
selecting the next node as the solution of a LP. The constraints of this LP are
possible responses #2 — a? from player 2. They are defined by previous ex-
ploration of the tree second level for which the leaf selection will be performed
through an heuristic search approach (e.g. sampling over joint types distribu-
tion).

Formally, the Bayesian game is given by a tuple (©!,02, Al A2 r b)) where

e O is a finite set of types for player i
e A’ is a finite set of actions for player i

o r: 0! x02x A' x A? is the utility function giving the payoff for 1 playing
a' in type 6' and 2 playing a® in 62.

e by € A(O! x ©?) is the initial distribution over player’s types.
and the sequential game representation is given by

e the initial node by € A(O! x ©2),

13

e The edges from by represent stochastic strategies for player 1 7, € O

A(AY)
e level 1 nodes as are tuples (71, bo)
e edges from nodes (77, by) represent all possible types #2 € ©2 for player 2,
e level 2 nodes are triplets (71, bo, 62)

e Edges from nodes (71, by, 6?) are deterministic actions a® € A? for player
2 knowing the specific type 62

e level 3 nodes represent the payoff function r(bg,71,a?|#?) € R ie. the
game payoff for strategy m;, common prior by, 2 and a?.

The evaluation of a joint strategy (w1, m2) will then be given by r(bg, 71, 73) =
> g2 P(6% | bo)r(bo, m1, m2(6?)|62) with 7o € ©2 — A? the nodes under the level
2 node representing 7.

2.3.1 Properties of the game tree

Our motivations to introduce the algorithm 1 are based on mathematical prop-
erties of such a tree. The following theorems are the main properties we want
to focus on to justify the exploration of such a solving algorithm.

Theorem 1 The function v* : by, b, 72 — r(7t, 72 bo) is linear w.r.t w2

Proof 1 Let R be the game matriz s.t. R = {bo(0*,6?)r(0*,60%, a*,a®)} g1 a1),(62,02)-
By definition, we have

r(rt, w2 by) = Z 7 (at]6Y) - 72 (a?]6%) - bo(0*, 0%)r (6, 6%,a*, a?)
al,01,a2,62

er(rh,mib)= > w'(a'0")- R0, 0% a",a%) 7*(a®]6%)

al,0t a2,02

e, mb) = Y wl(a'|e) | Y R(6',6%a',d?) - 7*(a’]6?)
al,0t a?,02
e r(rt, 72, b) = Z ' (a'|0") [R - 7*]
al, 6!

sr(rt,n%b) =7 [R-7°] =x" - R-7°.

Thus, r(mt, 72, by) =« - R - 72

1

Theorem 2 The function v* : by, 7! +— minge r(7!,72) can be mazimized by

solving a linear program.

14

Proof 2 We have already established, in section 2.1, that the corresponding LP
1s the following.

Vj € |0?], 7} = argmax E Q;
T,]

and with the constraints :
with 6! € 1,
with j € |02,
with a* € A!,
with a® € A?,
Vi, ¥a®, Y bo(0',02) - xt (al]0") - v(a',a?, 60", 0%) > a;
01,at
Vo', wl(a'|0") =1
al
Vo' Ya', 7w (a'6") > 0
Theorem 3 The function v* : by — max minge r(rl, 72) is Lipschitz

Proof 3 Firstly, [5] (Lemma 3.5 (p. 33)) showed that a bi-linear function bounded
by [u,v] C R? defined over a simplex is \-Lipschitz with A = (u — v)/2. Thus,
the function by — r(by, T) is Lipschitz for any joint strategy 7.

Now considering optimal solutions,

v*(bo) — v*(bo) = maxmiZHT(boﬂrl, 7?) — maxmiznr(l;o,wl, 7?)

7T1 s 7T1 s

< max min [r(go,wl,wz) + A|bo — bo||| — max min r(by, 7', 72)
xl 72 w72

= Allbo — bol|-

Symetrically, U*(bo)fv*(z)o) < M“’O*BOH- Thus, v* is (max(i,j) R; j—ming ;) R; ;)/2-
Lipschitz (where R is the matrix representing the linear form).

2.3.2 Heuristic search algorithm

All these theoretical concepts seems to draw the path for an algorithm that could
perform well for Bayesian games. The algorithm we chose to implement and in-
vestigate is called Heuristic Search for Bayesian Game (HS4BG). Its overall
principle is to instantiate two different LPs, one to optimize player 1’s strat-
egy and one to optimize player 2’s strategy. As we focus on zero-sum games,
the absolute values of expected payoffs of both this strategies should tend to
be equal as the constraints of the LP grow and diversify. Thus, the principle
of the algorithm is to first initialize both LP and random strategies for each
players and then to update it with the following process : select a type to focus
on through heuristic search for each player, select the action which is the best

15

response to this type for each agent, add the corresponding constraints to the
LP and update players’ strategies as LP solutions. As we could repeat this
procedure forever, we define the convergence criteria to the difference between
absolute values of expected utilities being less than an arbitrary value epsilon.
This parameter should be proportional to the game payoff profile as it should
represent an reasonable deviation from the very optimal solution. The formal
description is depicted by the following algorithm.

Algorithm 1: HS4BGv2
1: Initialize d7* = {§7" — a7} and 7 = random()
2: while T(bg) — v(bg) > € do
3 O = HS(TIJ)
Replace d™¢9%(7%*) by 6~%* — argmin,; 7(bg, 7, a ™)
UpdateLPConstraints(d ™)
7wl < LP.solution, n% < LP.solution
v(bo) = LP.val
8 w(bg) = LP.wal
9: end while
10: return

This algorithm makes use of an heuristic search function that can affect
greatly its results. In this first exploration steps, we propose three version of
this heuristic search.

2.3.2.1 Naive Heuristic Search returns a type according to its probability.

A(62)

maz—Rmin

2.3.2.2 Medium Heuristic Search returns a type according to P(6%)-
where A(6?) is the last variation of value for type 6 and equals 0 by default.
This is encouraged by the fact that 7! has to make the function 72 +— r(7!, 72)
constant so that the better 7' becomes, the closer the variation should be to 0.

2.3.2.3 Advanced Use oracle method, i.e restrict the support of 7* to be
a distribution over already encountered pure strategies on the other tree that
were "best” responses to m .

2.3.3 SDMS’s Implementation

The heuristic search solver’s implementation on SDM’S takes advantage of all
side classes described in section 2.2.1. However, instead of using the TwoPlay-
ersBayesianGameSolver class, it is based on the HS/BG class which contains all
utility functions, such as initLP(), bestResponse(..), updateLP(..), updateStrage-
gies(..), and the C++ implementation of algorithm 1 with the solve() method.
An example file is given with ezamples/ex-hs4bg.cpp of how to use this solver,
which is the exact same way as the TwoPlayersBayesianGameSolver.

16

HS4BG Solve Time = f(actions distribution) with types distribution =

50/50
60000000

. 40000000

w

2

L4

E

2

= 20000000

01666666667 0,3333333333

Agent1 actions percentage

Figure 10: HS4BG with naive HS : actions distribution influence

One main difference with the TwoPlayersBayesianGameSolver is that this
solver does not allow to solve the game for a specific agent. Instead, it does so
for both agents and store the resulting strategies as instances of StochasticDe-
cisionRule.

2.3.4 Algorithm’s evaluation

In order to draw a comparison with the complete LP algorithm (see section
2.2), we perform the same tests as those in section 2.2. We detail below the
results obtained for the HS4BG algorithm with the naive version of the Heuristic
Search.

Once again, let’s discuss types and actions distributions influence first. Graph-
ics 10 and 11 show that, once again, the algorithm performs better when dis-
tributions are imbalanced. Thus, we can admit that this approach also takes
advantage of the primal-dual property. i.e. when there are imbalances, a step
of the algorithm (LP solving) is faster and the number of constraints required
to obtain an e-optimal decreases.

Then, we are interested in comparing the naive heuristic search approach
with the complete LP algorithm regarding the sizes of the game to be solved.
Figure 12 shows that the HS4BG algorithm with the naive HS is slower than
the complete LP approach for games with input size under 1600. Its time
complexity, however, seems to also be polynomial as the graphs show the same
tendency.

What’s good is that the HS4BG algorithm seems to always converge towards
an e-optimal solution. The graphs of Figure 13 show the LP solution value evo-
lution at each step of the HS4BG algorithm for games with different sizes and

17

HS4BG Solve Time = f(types distribution) with actions distribution =

50/50
30000000

. 20000000

w

2

L4

E

2

= 10000000

01666666667 0,3333333333

Agent 1 types percentage

Figure 11: HS4BG with naive HS : types distribution influence

two different values of e.

As of now, the results obtained with this version of the HS4BG algorithm
show that the naive HS implementation may always be less attractive than the
complete LP approach. Let’s see how the medium HS performs.

Figure 14 show that the medium HS performed even worse than the naive
HS on test data. The complexity tendency is polynomial as well but, for any
game size, more steps are needed to converge to an e-optimal solution with the
medium HS than with the naive HS.

Figures 15 and 16 also demonstrate the same behaviour than previously observed
with players imbalances on number of types and/or actions.

However, even though it takes more steps, the algorithm seems to always
converge with the medium HS as shown by Figure 17.

Through these results, we tend to think that weighting the probability of a
type to be chosen by its last learning contribution is not accurate i.e. we need
to focus on exploring new types.

The advanced HS version that we propose could, indeed, result in faster

computation time through faster convergence. However, its implementation
and testing won’t be featured in this document.

18

Algo times comparison : Complete LP vs HS4BG naive HS (with log
scale)

== HS4BG Inittime (us) == HS4BG Solve time (us) Compete LP building time (us)
== Complete LP solve time (us)

100000000
10000000
w
=
E 1000000
=
100000
10000
250 500 750 1000 1250 1500

Input size

(a) Algorithm steps comparison

Total times: Complete LP vs HS4BG naive HS (with log scale)

== HS4BG total ime (Us) == Complete LP Total time (us)

100000000

10000000

Time (us)

1000000

100000
250 500 750 1000 1250 1500

Input size
(b) Total time comparison

Figure 12: HS4BG vs Complete LP time comparison

LP values for game of size (10,10,10,10) with EPSILON=0.1

= GAME1 == GAME 2

\/

40 60 80 100

(a) (10,10,10,10) Games with e=0.1

LP values for game of size (15,15,15,15)

= GAME 1 == GAME 2

Y

25 50 75 100 125 150

(b) (15,15,15,15) Games with e=0.1

LP values for game of size (10,10,10,10) with EPSILON=0.01

== GAME1 == GAME 2

20

Y

25 50 75 100 125 150
(c¢) (10,10,10,10) Games with e=0.01

Figure 13: LP values for HS4BG with naive HS

Total time comparison ;. complete LP vs naive HS vs medium HS (with log

scale)
== naive HS == medium HS complete LP
1000000000
100000000
)
- 10000000
£
£
1000000
100000
250 &00 750 1000 1250 1500
Input size

Figure 14: Total times comparison : complete LP vs HS4BG naive HS vs HS4BG
medium HS

HS4BG Solve Time = f(actions distribution) with types distribution =

50/50
80000000
£0000000

0

2

£ 40000000

2

b=

w
20000000

01666666667 0,3333333333

Agent 1 actions percentage

Figure 15: HS4BG with medium HS : actions distribution influence

HS4BG Solve Time = f(types distribution) with actions distribution =

50/50
60000000

. 40000000

w

2

L4

E

2

= 20000000

01666666667 0,3333333333

Agent 1 types percentage

Figure 16: HS4BG with medium HS : types distribution influence

2.4 Discussion

All the previous analysis have been performed on games with a type probability
distribution close to uniform. In order to better understand the HS perfor-
mances and fits, we should later investigate other distributions e.g. Normal
distribution.

3 Conclusion

Throughout this document, we have established basic solving theory on ZS
normal-form and Bayesian games, detailed their SDM’s implementation and
analysed the results. In order to do better, we proposed an alternative way of
solving Bayesian games by introducing a sequential representation of the game
and building the associated linear problems step by step through an heuristic
search approach. The results for two different search heuristics showed that
there is room for improvement and that it can be performed by choosing bet-
ter heuristics. However, we observed that this new approach can indeed solve
Bayesian games and that the convergence speed depends on many features in
the game which could make this approach more suited for a specific type of
Bayesian games.

22

LP values for game of size (10,10,10,10) with EPSILON=0.1

= GAME1 == GAME 2

-
Ve

25 50 75 100 125 150
(a) (10,10,10,10) Games with e=0.1
LP values for game of size (15,15,15,15) with EPSILON=0.1
- Game | = Game 2
4
\
2 K
0
2 /
4l
-6
50 100 180 200

(b) (15,15,15,15) Games with e=0.1

Figure 17: LP values for HS4BG with medium HS

23

References

[1] Shmuel Zamir. Bayesian Games: Games with Incomplete Information, pages
426-441. Springer New York, New York, NY, 2009.

[2] Olivier Armantier, jean-pierre Florens, and Jean-Francois Richard. Ap-
proximation of nash equilibria in bayesian games. Journal of Applied
Econometrics, 23:965-981, 11 2008.

[3] Kevin Leyton-Brown and Yoav Shoham. Essentials of Game Theory: A
Concise Multidisciplinary Introduction, volume 2. 01 2008.

[4] Minimax Theorem. https://en.wikipedia.org/wiki/Minimax#Minimax_theorem.

[6] Karel Hordk. Scalable Algorithms for Solving Stochastic Games with
Limited Partial Observability. PhD thesis, Czech Technical University in
Prague, Faculty of Electrical Engineering, 2019.

24

